Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Genes Dis ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2320929

ABSTRACT

Inactivated COVID-19 vaccines have been widely used to vaccinate the Chinese population. However, limited literature exists to explore the effect of obesity on the humoral and cellular immune response to these vaccines. In this study, 132 high BMI (Body mass index) (obesity and overweight, BMI ≥ 24 kg/m2) and 82 normal BMI (BMI < 24 kg/m2) participants were enrolled. Adverse events (AEs), Spike receptor-binding domain IgG antibody (anti-RBD-IgG), neutralizing antibodies (NAbs), and specific B-cell and T-cell responses were evaluated 21-105 days after full-course inactivated COVID-19 vaccination. The overall incidence of adverse events (AEs) was similar in individuals with and without obesity/overweight. No serious vaccine-related AEs occurred. Individuals with obesity/overweight had a reduced seropositivity rate of NAbs compared to those with normal BMI. Anti-RBD-IgG and NAbs titers in the high BMI group were significantly lower than those in the normal BMI group. The frequencies of RBD-specific memory B cells (MBCs) and the numbers of spike-specific TNF-α+ spot-forming cells (SFCs) in individuals with obesity/overweight were reduced compared with those noted in individuals without obesity/overweight. A similar trend of weakened humoral responses was also observed in individuals with central obesity. Our study results suggested that inactivated COVID-19 vaccines were safe and well tolerated but induced poor humoral and cellular immune responses in Chinese individuals with obesity/overweight.

2.
mSystems ; 8(1): e0057622, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2287221

ABSTRACT

Shopping malls offer various niches for microbial populations, potentially serving as sources and reservoirs for the spread of microorganisms of public health concern. However, knowledge about the microbiome and the distribution of human pathogens in malls is largely unknown. Here, we examine the microbial community dynamics and genotypes of potential pathogens from floor and escalator surfaces in shopping malls and adjacent road dusts and greenbelt soils. The distribution pattern of microbial communities is driven primarily by habitats and seasons. A significant enrichment of human-associated microbiota in the indoor environment indicates that human interactions with surfaces might be another strong driver for mall microbiomes. Neutral community models suggest that the microbial community assembly is strongly driven by stochastic processes. Distinct performances of microbial taxonomic signatures for environmental classifications indicate the consistent differences of microbial communities of different seasons/habitats and the strong anthropogenic effect on homogenizing microbial communities of shopping malls. Indoor environments harbored higher concentrations of human pathogens than outdoor samples, also carrying a high proportion of antimicrobial resistance-associated multidrug efflux genes and virulence genes. These findings enhanced the understanding of the microbiome in the built environment and the interactions between humans and the built environment, providing a basis for tracking biothreats and communicable diseases and developing sophisticated early warning systems. IMPORTANCE Shopping malls are distinct microbial environments which can facilitate a constant transmission of microorganisms of public health concern between humans and the built environment or between human and human. Despite extensive investigation of the natural environmental microbiome, no comprehensive profile of microbial ecology has been reported in malls. Characterizing microbial distribution, potential pathogens, and antimicrobial resistance will enhance our understanding of how these microbial communities are formed, maintained, and transferred and help establish a baseline for biosurveillance of potential public health threats in malls.


Subject(s)
Environmental Pollutants , Microbiota , Humans , Microbiota/genetics , Soil , Public Health , Built Environment
3.
J Med Virol ; 95(4): e28695, 2023 04.
Article in English | MEDLINE | ID: covidwho-2254691

ABSTRACT

Given the pandemic of severe acute respiratory syndrome coronavirus 2 Omicron variants, booster vaccination (BV) using inactivated virus vaccines (the third dose) has been implemented in China. However, the immune responses after BV, especially those against Omicron, in patients with chronic hepatitis B virus (HBV) infection (CHB) are unclear. In this prospective longitudinal study, 114 patients with CHB and 68 healthy controls (HCs) were recruited after receiving inactivated vaccination. The anti-receptor-binding domain (RBD) immunoglobulin G (IgG), neutralizing antibodies (NAbs), neutralization against Omicron (BA2.12.1, BA.4/5), and specific B/T cells were evaluated. In patients, anti-RBD IgG was elevated significantly after BV; the titers were as high as those in HCs. Similar results were obtained for the NAbs. However, compared with that against wild type (WT), the neutralization against Omicron was compromised after BV. The frequency of RBD+ atypical memory B cells increased, but spike-specific cluster of differentiation 4+ /8+ T cells remained unchanged after BV. Moreover, no serious adverse events or HBV reactivation were observed after BV. These results suggest that BV significantly enhanced antibody responses against WT; however, it resulted in compromised antibody responses against Omicron in patients with CHB. Hence, new all-in-one vaccines and optimal vaccination strategies should be studied promptly.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Humans , Longitudinal Studies , Prospective Studies , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , Immunoglobulin G , Antibodies, Viral
4.
Virol J ; 20(1): 22, 2023 02 07.
Article in English | MEDLINE | ID: covidwho-2237118

ABSTRACT

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) have been reported to be more susceptible to 2019 novel coronavirus (2019-nCoV) and more likely to develop severe pneumonia. However, the safety and immunological responses of T2DM patients after receiving the inactivated vaccines are not quite definite. Therefore, we aimed to explore the safety, antibody responses, and B-cell immunity of T2DM patients who were vaccinated with inactivated coronavirus disease 2019 (COVID-19) vaccines. METHODS: Eighty-nine patients with T2DM and 100 healthy controls (HCs) were enrolled, all of whom had received two doses of full-course inactivated vaccines. At 21-105 days after full-course vaccines: first, the safety of the vaccines was assessed by questionnaires; second, the titers of anti-receptor binding domain IgG (anti-RBD-IgG) and neutralizing antibodies (NAbs) were measured; third, we detected the frequency of RBD-specific memory B cells (RBD-specific MBCs) to explore the cellular immunity of T2DM patients. RESULTS: The overall incidence of adverse events was similar between T2DM patients and HCs, and no serious adverse events were recorded in either group. Compared with HCs, significantly lower titers of anti-RBD-IgG (p = 0.004) and NAbs (p = 0.013) were observed in T2DM patients. Moreover, the frequency of RBD-specific MBCs was lower in T2DM patients than in HCs (p = 0.027). Among the 89 T2DM patients, individuals with lower body mass index (BMI) had higher antibody titers (anti-RBD-IgG: p = 0.009; NAbs: p = 0.084). Furthermore, we found that sex, BMI, and days after vaccination were correlated with antibody titers. CONCLUSIONS: Inactivated COVID-19 vaccines were safe in patients with T2DM, but the antibody responses and memory B-cell responses were significantly decreased compared to HCs. TRIAL REGISTRATION NUMBER AND DATE: NCT05043246. September 14, 2021. (Clinical Trials.gov).


Subject(s)
COVID-19 Vaccines , COVID-19 , Diabetes Mellitus, Type 2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunoglobulin G , SARS-CoV-2 , Vaccines, Inactivated , Case-Control Studies
5.
Front Immunol ; 14: 1084646, 2023.
Article in English | MEDLINE | ID: covidwho-2224780

ABSTRACT

Background: The neutralizing antibodies (NAbs) response after COVID-19 vaccination after liver dysfunction is unclear. In this study, we evaluated the NAbs response after COVID-19 vaccination in hospitalized patients suffering from liver dysfunction. Methods: In this cross-sectional study with longitudinal follow-up, we enrolled eligible patients with liver dysfunction and healthy volunteers with full-course COVID-19 vaccination. Blood samples were collected for the NAbs testing at the time of admission and after treatment. Multiple regression analysis to assess independent risk factors affecting NAbs response. Results: A total of 137 patients and 134 healthy controls (HC) were enrolled. Both seropositivity (65.7% vs 80.6%, p<0.01) and titer (3.95 vs 4.94 log2 AU/ml, p<0.001) of NAbs in patients were significantly lower than that in HC. The decrease of antibody titer in patients was significantly faster than that in HC. After adjusting for potential confounding factors, males (odds ratio [OR]: 0.17; 95% confidence interval [CI]: 0.06, 0.46; p<0.001) and severe liver damage (OR: 0.30; 95% CI: 0.12, 0.71; p<0.01) were significantly associated with reduction of the probability of NAbs seropositivity in the multiple regression analysis. Males (ß =-1.18; 95% CI: -1.73,-0.64) and chronic liver diseases (ß =-1.45; 95% CI: -2.13, -0.76) were significantly associated with lower NAbs titers. In 26 patients with liver failure, both antibody seropositivity (53.8% vs 84.6%, p<0.05) and titer (3.55 vs 4.32 log2 AU/ml, p<0.001) did not decrease but increased after artificial liver plasmapheresis. Conclusions: NAbs response to COVID-19 inactivated or subunit recombinant vaccines was waning in patients with liver dysfunction. Moreover, patients with male sex, severe liver injury and chronic liver diseases have an increased risk of poor antibody responses.


Subject(s)
COVID-19 Vaccines , COVID-19 , Liver Diseases , Humans , Male , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies
6.
J Med Virol ; 95(1): e28434, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173210

ABSTRACT

Heterogeneity of antibody responses has been reported in SARS-CoV-2 vaccination recipients with underlying diseases. We investigated the impact of the presence of comorbidities on the humoral response to SARS-CoV-2 vaccination in patients with chronic disease (PWCD) and assessed the effect of the number of comorbidities on the humoral response to vaccination. In this study, neutralizing antibodies (NAbs) and IgG antibodies against the receptor-binding domain (RBD-IgG) were monitored following a full-course vaccination. In total, 1400 PWCD (82.7%, inactivated vaccines; 17.3%, subunit recombinant vaccine) and 245 healthy controls (65.7% inactivated vaccines, 34.3% subunit recombinant vaccine) vaccinated with inactivated or subunit recombinant SARS-CoV-2 vaccines, were included. The seroconversion and antibody levels of the NAbs and RBD-IgG were different in the PWCD group compared with those in the control group. Chronic hepatitis B (odds ratio [OR]: 0.65; 95% confidence interval [CI]: 0.46-0.93), cancer (OR: 0.65; 95% CI: 0.42-0.99), and diabetes (OR: 0.50; 95% CI: 0.28-0.89) were associated with lower seroconversion of NAbs. Chronic kidney disease (OR: 0.29; 95% CI: 0.11-0.76), cancer (OR: 0.38; 95% CI: 0.23-0.62), and diabetes (OR: 0.37; 95% CI: 0.20-0.69) were associated with lower seroconversion of RBD-IgG. Only the presence of autoimmune disease showed significantly lower NAbs and RBD-IgG titers. Patients with most types of chronic diseases showed similar responses to the controls, but humoral responses were still significantly associated with the presence of ≥2 coexisting diseases. Our study suggested that humoral responses following SARS-CoV-2 vaccination are impaired in patients with certain chronic diseases.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Chronic Disease , China , Antibodies, Neutralizing , Immunoglobulin G , Vaccination , Antibodies, Viral
7.
JAMA Netw Open ; 5(12): e2244505, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2127467

ABSTRACT

Importance: SARS-CoV-2, which causes COVID-19, poses considerable morbidity and mortality risks. Studies using data collected during routine clinical practice can supplement randomized clinical trials to provide needed evidence, especially during a global pandemic, and can yield markedly larger sample sizes to assess outcomes for important patient subgroups. Objective: To evaluate the association of remdesivir treatment with inpatient mortality among patients with COVID-19 outside of the clinical trial setting. Design, Setting, and Participants: A retrospective cohort study in US hospitals using health insurance claims data linked to hospital chargemaster data from December 1, 2018, to May 3, 2021, was conducted among 24 856 adults hospitalized between May 1, 2020, and May 3, 2021, with newly diagnosed COVID-19 who received remdesivir and 24 856 propensity score-matched control patients. Exposure: Remdesivir treatment. Main Outcomes and Measures: All-cause inpatient mortality within 28 days of the start of remdesivir treatment for the remdesivir-exposed group or the matched index date for the control group. Results: A total of 24 856 remdesivir-exposed patients (12 596 men [50.7%]; mean [SD] age, 66.8 [15.4] years) and 24 856 propensity score-matched control patients (12 621 men [50.8%]; mean [SD] age, 66.8 [15.4] years) were included in the study. Median follow-up was 6 days (IQR, 4-11 days) in the remdesivir group and 5 days (IQR, 2-10 days) in the control group. There were 3557 mortality events (14.3%) in the remdesivir group and 3775 mortality events (15.2%) in the control group. The 28-day mortality rate was 0.5 per person-month in the remdesivir group and 0.6 per person-month in the control group. Remdesivir treatment was associated with a statistically significant 17% reduction in inpatient mortality among patients hospitalized with COVID-19 compared with propensity score-matched control patients (hazard ratio, 0.83 [95% CI, 0.79-0.87]). Conclusions and Relevance: In this retrospective cohort study using health insurance claims and hospital chargemaster data, remdesivir treatment was associated with a significantly reduced inpatient mortality overall among patients hospitalized with COVID-19. Results of this analysis using data collected during routine clinical practice and state-of-the-art methods complement results from randomized clinical trials. Future areas of research include assessing the association of remdesivir treatment with inpatient mortality during the circulation of different variants and relative to time from symptom onset.


Subject(s)
COVID-19 Drug Treatment , Adult , Male , United States/epidemiology , Humans , Aged , Retrospective Studies , SARS-CoV-2
8.
Front Immunol ; 13: 988004, 2022.
Article in English | MEDLINE | ID: covidwho-2080152

ABSTRACT

The antibody and B cell responses after inactivated SARS-CoV-2 vaccination have not been well documented in patients with autoimmune liver disease (AILD). Therefore, we conducted a prospective observational study that included AILD patients and healthy participants as controls between July 1, 2021, and September 30, 2021, at the Second Affiliated Hospital of Chongqing Medical University. All adverse events (AEs) after the COVID-19 vaccination were recorded and graded. Immunoglobulin (Ig)-G antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (anti-RBD-IgG) and neutralizicadng antibodies (NAbs) were tested following full-course vaccination (BBIBP-CorV or CoronaVac). In addition, SARS-CoV-2-specific B cells were detected by flow cytometry. In total, 76 AILD patients and 136 healthy controls (HCs) were included. All AEs were mild and self-limiting, and the incidences were similar between the AILD and HCs. The seropositivity rates of anti-RBD-IgG and NAbs in AILD were 97.4% (100% in HCs, p = 0.13) and 63.2% (84.6% in HCs, p < 0.001), respectively. The titers of anti-RBD-IgG and NAbs were significantly lower in AILD patients than those in HCs. After adjusting for confounders, immunosuppressive therapy was an independent risk factor for low-level anti-RBD-IgG (adjusted odds ratio [aOR]: 4.7; 95% confidence interval [CI], 1.5-15.2; p = 0.01) and a reduced probability of NAbs seropositivity (aOR, 3.0; 95% CI, 1.0-8.9; p = 0.04) in AILD patients. However, regardless of immunosuppressants, the SARS-CoV-2-specific memory B cells responses were comparable between the AILD and HC groups. Our results suggest that inactivated SARS-CoV-2 vaccines (BBIBP-CorV and CoronaVac) are safe, but their immunogenicity is compromised in patients with AILD. Moreover, immunosuppressants are significantly associated with poor antibody responses to the SARS-CoV-2 vaccines. These results could inform physicians and policymakers about decisions on screening the populations at higher risk of poor antibody responses to SARS-CoV-2 vaccines and providing additional vaccinations in patients with AILD.


Subject(s)
Autoimmune Diseases , COVID-19 , Liver Diseases , Humans , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Immunosuppressive Agents/adverse effects , Antibody Formation , Antibodies, Viral , Immunoglobulin G
11.
Liver Int ; 42(6): 1287-1296, 2022 06.
Article in English | MEDLINE | ID: covidwho-1666331

ABSTRACT

BACKGROUND AND AIMS: The safety and antibody responses of coronavirus disease 2019 (COVID-19) vaccination in patients with chronic hepatitis B (CHB) virus infection is still unclear, and exploration in safety and antibody responses of COVID-19 vaccination in CHB patients is significant in clinical practice. METHODS: 362 adult CHB patients and 87 healthy controls at an interval of at least 21 days after a full-course vaccination (21-105 days) were enrolled. Adverse events (AEs) were collected by questionnaire. The antibody profiles at 1, 2 and 3 months were elucidated by determination of anti-spike IgG, anti-receptor-binding domain (RBD) IgG, and RBD-angiotensin-converting enzyme 2 blocking antibody. SARS-CoV-2 specific B cells were also analysed. RESULTS: All AEs were mild and self-limiting, and the incidence was similar between CHB patients and controls. Seropositivity rates of three antibodies were similar between CHB patients and healthy controls at 1, 2 and 3 months, but CHB patients had lower titers of three antibodies at 1 month. Compared to healthy controls, HBeAg-positive CHB patients had higher titers of three antibodies at 3 months (all P < .05) and a slower decline in antibody titers. Frequency of RBD-specific B cells was positively correlated with titers of anti-RBD IgG (OR = 1.067, P = .004), while liver cirrhosis, antiviral treatment, levels of HBV DNA, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and total bilirubin (TB) were not correlated with titers of anti-RBD IgG. CONCLUSIONS: Inactivated COVID-19 vaccines were well tolerated, and induced effective antibody response against SARS-CoV-2 in CHB patients.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Adult , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hepatitis B e Antigens , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , Immunoglobulin G , SARS-CoV-2
12.
Energies ; 15(2):594, 2022.
Article in English | ProQuest Central | ID: covidwho-1633681

ABSTRACT

This paper reviews the economic and managerial literature on the relationship between energy-ICT and the development of the green energy economy. It is summarized that there are four lines of existing literature on energy-ICT: cost and benefit analysis, fair competition issues, cybersecurity issues, and promotion policy issues. Even though ICT is energy-consuming, most of the existing empirical studies support the idea that energy-ICT has net positive effects on energy savings, energy efficiency improvement, emission reduction, and economic growth at both enterprise and economy-wide levels. Energy-ICT equips the platform operator with higher bargaining power, such that a governance mechanism to assure the fair access right of each entitled participant is required. A smarter energy-ICT network also becomes riskier, and hence the cybersecurity protection is more important than before. Future research and development opportunities remain on these issues of the fair competition, cybersecurity, and promotion policy of energy-ICT.

13.
Front Public Health ; 9: 697850, 2021.
Article in English | MEDLINE | ID: covidwho-1438441

ABSTRACT

Mental health prediction is one of the most essential parts of reducing the probability of serious mental illness. Meanwhile, mental health prediction can provide a theoretical basis for public health department to work out psychological intervention plans for medical workers. The purpose of this paper is to predict mental health of medical workers based on machine learning by 32 factors. We collected the 32 factors of 5,108 Chinese medical workers through questionnaire survey, and the results of Self-reporting Inventory was applied to characterize mental health. In this study, we propose a novel prediction model based on optimization algorithm and neural network, which can select and rank the most important factors that affect mental health of medical workers. Besides, we use stepwise logistic regression, binary bat algorithm, hybrid improved dragonfly algorithm and the proposed prediction model to predict mental health of medical workers. The results show that the prediction accuracy of the proposed model is 92.55%, which is better than the existing algorithms. This method can be used to predict mental health of global medical worker. In addition, the method proposed in this paper can also play a role in the appropriate work plan for medical worker.


Subject(s)
COVID-19 , Mental Health , Algorithms , Humans , Machine Learning , SARS-CoV-2
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.06.21256781

ABSTRACT

We systematically investigated the transcriptomes of the peripheral immune cells from 6 inactivated vaccine, BBIBP-CorV recipients at 4 pivotal time points using single-cell RNA-seq technique. First, the significant variation of the canonical immune-responsive signals of both humoral and cellular immunity, as well as other possible symptom-driver signals were evaluated in the specific cell types. Second, we described and compared the common and distinct variation trends across COVID-19 vaccination, disease progression, and flu vaccination to achieve in-depth understandings of the manifestation of immune response in peripheral blood under different stimuli. Third, the expanded T cell and B cell clones were correlated to the specific phenotypes which allowed us to characterize the antigen-specific ones much easier in the future. At last, other than the coagulopathy, the immunogenicity of megakaryocytes in vaccination were highlighted in this study. In brief, our study provided a rich data resource and the related methodology to explore the details of the classical immunity scenarios.


Subject(s)
COVID-19 , Disseminated Intravascular Coagulation
15.
Math Biosci Eng ; 17(4): 3052-3061, 2020 04 08.
Article in English | MEDLINE | ID: covidwho-806451

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) infection broke out in December 2019 in Wuhan, and rapidly overspread 31 provinces in mainland China on 31 January 2020. In the face of the increasing number of daily confirmed infected cases, it has become a common concern and worthy of pondering when the infection will appear the turning points, what is the final size and when the infection would be ultimately controlled. Based on the current control measures, we proposed a dynamical transmission model with contact trace and quarantine and predicted the peak time and final size for daily confirmed infected cases by employing Markov Chain Monte Carlo algorithm. We estimate the basic reproductive number of COVID-19 is 5.78 (95%CI: 5.71-5.89). Under the current intervention before 31 January, the number of daily confirmed infected cases is expected to peak on around 11 February 2020 with the size of 4066 (95%CI: 3898-4472). The infection of COVID-19 might be controlled approximately after 18 May 2020. Reducing contact and increasing trace about the risk population are likely to be the present effective measures.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Models, Biological , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Algorithms , Basic Reproduction Number/statistics & numerical data , COVID-19 , China/epidemiology , Computer Simulation , Contact Tracing/statistics & numerical data , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Epidemics/prevention & control , Epidemics/statistics & numerical data , Geographic Mapping , Humans , Markov Chains , Mathematical Concepts , Monte Carlo Method , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Quarantine/statistics & numerical data , SARS-CoV-2
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.05.20187435

ABSTRACT

The adaptive immunity that protects patients from coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is not well characterized. In particular, the asymptomatic patients have been found to induce weak and transient SARS-CoV-2 antibody responses, but the underlying mechanisms remain unknown; meanwhile, the protective immunity that guide the recovery of these asymptomatic patients is also not well studied. Here, we characterized SARS-CoV-2-specific B-cell and T-cell responses in 10 asymptomatic patients and 49 patients with other disease severity (mild, n=10, moderate, n=32, severe, n=7) and found that asymptomatic or mild symptomatic patients failed to mount virus-specific germinal center (GC) B cell responses that result in robust and long-term humoral immunity, assessed by GC response indicators including follicular helper T (TFH) cell and memory B cell responses as well as serum CXCL13 levels. Alternatively, these patients mounted potent virus-specific TH1 and CD8+ T cell responses. In sharp contrast, patients of moderate or severe disease induced vigorous virus-specific GC B cell responses and associated TFH responses; however, the virus-specific TH1 and CD8+ T cells were minimally induced in these patients. These results therefore uncovered the protective immunity in asymptomatic patients and revealed the strikingly dichotomous and unbalanced humoral and cellular immune responses in COVID-19 patients with different disease severity, providing important insights into rational design of COVID-19 vaccines.


Subject(s)
COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.29.20164285

ABSTRACT

COVID-19 patients exhibit differential disease severity after SARS-CoV-2 infection. It is currently unknown as to the correlation between the magnitude of neutralizing antibody (NAb) responses and the disease severity in COVID-19 patients. In a cohort of 59 recovered patients with disease severity including severe, moderate, mild and asymptomatic, we observed the positive correlation between serum neutralizing capacity and disease severity, in particular, the highest NAb capacity in sera from the patients with severe disease, while a lack of ability of asymptomatic patients to mount competent NAbs. Furthermore, the compositions of NAb subtypes were also different between recovered patients with severe symptoms and with mild-to-moderate symptoms. These results reveal the tremendous heterogeneity of SARS-CoV-2-specific NAb responses and their correlations to disease severity, highlighting the needs of future vaccination in COVID-19 patients recovered from asymptomatic or mild illness.


Subject(s)
COVID-19
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.14.20151159

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) is a global pandemic with no licensed vaccine or specific antiviral agents for therapy. Little is known about the longitudinal dynamics of SARS-CoV-2-specific neutralizing antibodies (NAbs) in COVID-19 patients. Methods Blood samples (n=173) were collected from 30 COVID-19 patients over a 3-month period after symptom onset and analyzed for SARS-CoV-2-specific NAbs, using the lentiviral pseudotype assay, coincident with the levels of IgG and proinflammatory cytokines. Results SARS-CoV-2-specific NAb titers were low for the first 7-10 d after symtom onset and increased after 2-3 weeks. The median peak time for NAbs was 33 d (IQR 24-59 d) after symptom onset. NAb titers in 93.3% (28/30) of the patients declined gradually over the 3-month study period, with a median decrease of 34.8% (IQR 19.6-42.4%). NAb titers increased over time in parallel with the rise in IgG antibody levels, correlating well at week 3 (r = 0.41, p < 0.05). The NAb titers also demonstrated a significant positive correlation with levels of plasma proinflammatory cytokines, including SCF, TRAIL, and M-CSF. Conclusions These data provide useful information regarding dynamic changes in NAbs in COVID-19 patients during the acute and convalescent phases.


Subject(s)
COVID-19
19.
J Infect Dis ; 222(2): 189-193, 2020 06 29.
Article in English | MEDLINE | ID: covidwho-643587

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel ß-coronavirus, causes severe pneumonia and has spread throughout the globe rapidly. The disease associated with SARS-CoV-2 infection is named coronavirus disease 2019 (COVID-19). To date, real-time reverse-transcription polymerase chain reaction (RT-PCR) is the only test able to confirm this infection. However, the accuracy of RT-PCR depends on several factors; variations in these factors might significantly lower the sensitivity of detection. METHODS: In this study, we developed a peptide-based luminescent immunoassay that detected immunoglobulin (Ig)G and IgM. The assay cutoff value was determined by evaluating the sera from healthy and infected patients for pathogens other than SARS-CoV-2. RESULTS: To evaluate assay performance, we detected IgG and IgM in the sera from confirmed patients. The positive rate of IgG and IgM was 71.4% and 57.2%, respectively. CONCLUSIONS: Therefore, combining our immunoassay with real-time RT-PCR might enhance the diagnostic accuracy of COVID-19.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Immunoenzyme Techniques/methods , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adult , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Luminescent Measurements , Male , Middle Aged , Pandemics , Peptides/immunology , Pneumonia, Viral/immunology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Viral Proteins/immunology
20.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-36752.v1

ABSTRACT

Background: Many Pre-exposure prophylaxis (PrEP) users have difficulty attending the quarterly facility-based HIV testing, which leads to the potential risk of drug resistance in the context of breakthrough infection with low drug compliance. We explored the acceptance of HIV self-testing (HIVST) service among PrEP recipients. Methods: MSM were recruited for the PrEP demonstration in four major cities in China from December 2018 to September 2019, provided with regimens of both daily and on-demand PrEP. Facility-based HIV testing was provided quarterly at clinic visits. Previous HIV testing history and acceptance of free HIVST kits to use between each quarterly clinic visit was collected. Correlates of levels of acceptance were analysed using multivariable ordinal logistic regression. Results: We recruited 1,222 MSM. among which 48.5% preferred daily PrEP and 51.5% preferred on-demand PrEP. There was 26.8% (321/1222) had never been to any facility-based HIV testing previously, and the self-reported major reason was that they had already routinely used HIVST. A quarter of the participants (74.5%, 910/1222) had used HIVST previously. There were 1184 MSM (96.9%) accepted to use HIVST between each quarterly clinic visits during PrEP usage, composing 947 ( 77.5%) very willing to, 237(19.4%)willing to, 29 (2.4%) unwilling to, and 9 (0.7%) very unwilling to. Participants preferred daily PrEP (vs. on-demand PrEP, aOR=1.8, 95% CI:1.3-2.4) and had less than 2 times of facility-based HIV testing in the past year (vs. ³2, aOR=1.4,95% CI:1.1-1.9) were more likely to have higher level of acceptance of HIVST.Conclusions: MSM had high acceptance of HIVST, especially among those preferred daily PrEP and with less facility-based HIV testing in the previous year. Offering HIVST services PrEP recipients is feasible and necessary. Above result is of great significance for promoting HIVST among PrEP users during COVID-19, improving awareness of their HIV infection status and ensuring compliance with medication. Future study should exam the impact of HIVST on HIV testing frequency among PrEP users.Trial registration: ChiCTR1800020374 on 27th Dec 2018. http://www.chictr.org.cn/searchproj.aspx


Subject(s)
COVID-19 , Breakthrough Pain , Testicular Neoplasms , HIV Infections
SELECTION OF CITATIONS
SEARCH DETAIL